Analytic Marching: An Analytic Meshing Solution from Deep Implicit Surface Networks
Analytic marching: An analytic meshing solution from deep implicit surface networks
目录
Motivation
- deep learning领域出现了很多研究,surface 的implicit functions用MLP+ReLU实现
- 为了实现meshing (exactly recover meshes) from learned implicit functions (MLP+ReLU)
- 现有的方法采用的事实上都是标准的marching cubes采样算法;虽然效果还行,但是损失了学到的MLP的精确度,due to 离散化的本质
- 基于ReLU-based MLP 把input空间分为很多线性区域的事实,本篇把这些区域识别为analytic cells与analytic faces,与implicit function的零值等值面有关
- 推导了这些identified analytic faces在什么理论条件下可以保证形成一个闭合的、piecewise的planar surface
- 基于本篇的这些理论推导,提出了一个可并行化的算法,在这些analytic cells上做marching,来==exactly recover==这些由learned MLP学出来的mesh
overview
- 算法的初始:先用SGD $\underset {\boldsymbol{x}\in\mathbb{R}^3}{\min} \lvert F(\boldsymbol{x}) \rvert$ 找到表面上的一个点