目录

目录

Learning Canonical Representations for Scene Graph to Image Generation


Learning canonical representations for scene graph to image generation

Motivation

  • 过去的sg2im的一个不足是不能捕捉graphs中的语义等价性(semantic equivalence)
    • 即:同样一张图片可以用多个逻辑上等价的SG来表述
  • 所以提出从数据中学习出canonical graph representations
  • 主要展示3个数据集:visual genome, COCO, clevr

Overview

  • SG to canonical weighted SG
  • weighted SG to layout
  • layout to image

Scene Graph Canonicalization

  • transitive relation, converse relations

效果

  • https://longtimenohack.com/posts/paper_reading/2020eccv_herzig_learning/image-20201217112917616.png