Learning Canonical Representations for Scene Graph to Image Generation
Learning canonical representations for scene graph to image generation
目录
Motivation
- 过去的sg2im的一个不足是不能捕捉graphs中的语义等价性(semantic equivalence)
- 即:同样一张图片可以用多个逻辑上等价的SG来表述
- 所以提出从数据中学习出canonical graph representations
- 主要展示3个数据集:visual genome, COCO, clevr
Overview
- SG to canonical weighted SG
- weighted SG to layout
- layout to image
Scene Graph Canonicalization
- transitive relation, converse relations