目录

目录

Learning category-specific mesh reconstruction from image collections


<CMR> Learning category-specific mesh reconstruction from image collections

Motivation

https://longtimenohack.com/posts/paper_reading/2018eccv_kanazawa_lerning/image-20201207225935008.png

Overview

https://longtimenohack.com/posts/paper_reading/2018eccv_kanazawa_lerning/image-20201207230015167.png

  • 一张图片encode到一个latent space, 被三个模块共享

  • shape predictor,学到的是从mean shape出发的顶点的位移改变量

  • texture predictor,学到的是从输入图像的texture flow

  • camera predictor,学到的是canonical space下的camera pose

  • deformation predictor事实上学到的是从一个learned mean shape的变形 texture使用标准UV映射定义

  • mesh定义在canonical frame下 mean shape和sphere有相同的geometry

    • 相同的顶点连接性,相当于fixed topology,拓扑是固定的
      • 思考甜甜圈和咖啡杯的拓扑是一样的:通过顶点移位变形可以变形过去
      • a fixed and pre-determined mesh connectivity 连接性是固定的
    • 所谓shape predictor,其实是预测固定个数的vertices的位置改变
      https://longtimenohack.com/posts/paper_reading/2018eccv_kanazawa_lerning/image-20201207231029039.png
    • 我们可以从uv图的坐标映射到球面坐标,再映射到mean shape上的坐标,再通过shape 变形(顶点移位)映射到当前shape上的顶点坐标
  • texture predictor 事实上学到的是从单张图片出发的texture flow https://longtimenohack.com/posts/paper_reading/2018eccv_kanazawa_lerning/image-20201207232213580.png